Featured Video Play Icon
Posted on
19
May 2021

GMAT Algebra Problem – Parts – Hotdogs & Donuts

GMAT Algebra Problem Introduction

Hi guys. Today I’m here with a classic GMAT Algebra problem, what we call a parts problem. And if you take a look at this problem you’re going to realize that it just looks like a bunch of algebra. But the key here is in how you frame it. We’ve got this diner or whatnot selling hot dogs and then after that point, so imagine like a timeline, they start selling donuts. Then they give us a piece of information about hot dogs to donuts over that course of secondary time but then give us this overarching total number of food products sold.

Distill The Ration

So what we need to do are two steps: the first one is fairly straightforward. We see that we have to get rid of the hot dogs that were sold in advance in order to distill the ratio but then the ratio can seem very, very complex, especially because it just tells us seven times and a lot of times the GMAT will do this as a way to throw us off the scent. So when we have seven times, what that means is we have eight parts. That is it’s saying for every one of these we have one, two, three, four, five, six, seven of these. Meaning in total there are eight. So while seven is kind of a scary number, eight is a number we can divide by easily. You always want to look for that when you’re given a ratio of one thing to another especially when they say something times as many.

Solving the GMAT Problem

We take that thirty thousand two hundred knock off the fifty four hundred and get to twenty four thousand eight hundred and lo and behold that’s divisible by eight meaning each part is going to be 3100. Notice there’s no complex division there, 24 divided by 8, 800 divided by 8 and that’s the sort of mental math we can expect from the GMAT always. Which as you’ve seen before: if you’re doing that you’re doing something wrong.

Each part is 3100 and we’re concerned with the seven parts so we can either scale that 3100 up by seven into 21700, again the math works out super smoothly or we can take the 24800 knock off 3100 and get to that 21700. Notice in the answer choices there’s a few things to address sort of common errors that might be made.

Reviewing the Answer Signals

On one of the answer choices what you’re looking at is dividing the total, the 30 200 by eight and multiplying by seven that is seven eighths of it without getting rid of those first 5400. Another answer is close to our 21700 correct answer and this is also a fairly reliable signal from the GMAT.

When they give you a range of answers but two of them are kind of tightly clustered together a lot of times it’s going to be one of the two and that second one there is to prevent you from too roughly estimating. But at the same time if you’re short on time or just in general you want to hone down and understand what you’re supposed to do that serves as a really strong signal. And then one of the answer choices is the 1/8 of it rather than the 7/8.

Clustered Answer Choices

I want to speak a little more deeply about that signal about those two tightly clustered answer choices because as I said it can help you narrow to a very quick 50/50 when you’re constrained for time or this problem is just one that’s really not up your alley but it also can be leveraged in a really, really neat way.

If we assume that one or the other is the answer choice we can differentiate these two different answer choices by what they’re divisible by and so notice the 21700 is very clearly, with strong mental math is divisible by seven. Where the other one is not. Also neither of them are divisible by eight. We can look at these two say okay one of them is probably right, one of them is divisible by seven, the other one is not, so there’s our right answer and we can move on to the next problem. So I hope this helps. Write your comments and questions below. Subscribe to our channel at Apex GMAT here and give us a call if we can ever help you.

To work on similar GMAT algebra problem/s see this link: Work Rate Problem.

Read more
Featured Video Play Icon
Posted on
13
May 2021

GMAT Factors Problem – 700 Level GMAT Question

GMAT Factors Problem

Hey guys! Today we’re going to take a look at one of my favorite problems. It’s abstract, it’s oddly phrased and in fact the hardest part for many folks on this problem is simply understanding what’s being asked for. The difficulty is that it’s written in math speak. It’s written in that very abstract, clinical language that if you haven’t studied advanced math might be new to you.

How this breaks down is they’re giving us this product from 1 to 30, which is the same as 30!. 30*29*28 all the way down the line. Or you can build it up 1*2*3*……*29*30.

The Most Difficult Part of The GMAT Problem

And then they’re asking this crazy thing about how many k such that three to the k. What they’re asking here is how many factors of three are embedded in this massive product. That’s the hard part! Figuring out how many there are once you have an algorithm or system for it is fairly straightforward. If we lay out all our numbers from 1 to 30. And we don’t want to sit there and write them all, but just imagine that number line in your head. 1 is not divisible by 3. 2 is not divisible by 3, 3 is. 4 isn’t. 5 isn’t. 6 is. In fact, the only numbers in this product that concern us are those divisible by 3. 3, 6, 9, 12, 15, 18, 21, 24, 27, 30.

Important Notes About Factors

Here it’s important to note that each of these components except the three alone has multiple prime factors. The three is just a three. The six is three and a two. The nine notice has a second factor of three. Three times three is nine and because we’re looking at the prime factors it has two. It’s difficult to get your head around but there are not three factors of three in nine when you’re counting prime factors.

Three factors of three would be 3 by 3 by 3 = 27. So notice that 3 and 6 have a single factor. 9 has a double factor. Every number divisible by 3 has one factor. Those divisible by 9 like 9, 18 and 27 are going to have a second factor and those divisible by 27, that is 3 cubed, are going to have a third factor. If we lay it out like this we see ten numbers have a single factor. Another of those three provide a second bringing us to thirteen. Finally, one has a third bringing us to fourteen. Answer choice: C.

GMAT Problem Form

So let’s take a look at this problem by writing a new one just to reinforce the algorithm. For the number 100 factorial. How many factors of seven are there? So first we ask ourselves out of the 100 numbers which ones even play? 7, 14… 21 so on and so forth. 100 divided by 7 equals 13. So there are 13 numbers divisible by 7 from 1 to 100. Of those how many have more than one factor of 7? Well we know that 7 squared is 49. So only those numbers divisible by 49 have a second factor. 49 and 98. There are none that have three factors of 7 because 7 cubed is 343. If you don’t know it that’s an identity you should know. So here our answer is 13 plus 2 = 15.

Try a few more on your own. This one’s great to do as a problem form and take a look at the links below for other abstract number theory, counting prime type problems as well as a selection of other really fun ones. Thanks for watching guys and we’ll see you soon.

If you enjoyed this GMAT factors problem, here is an additional number theory type problem to try next: Wedding Guest Problem.

 

 

 

Read more
Featured Video Play Icon
Posted on
28
Apr 2021

Advanced Work Rate GMAT Problem

Work Rate Problem Introduction &Challenges

Hi guys! Today we’re going to look at a super challenging work rate problem. This is one of those keystone problems, where if you have this problem really, really down then it indicates that you won’t have a problem with any work rate problem, speed-distance problem whatsoever.

The challenges in this problem are several. First off, you don’t have any base number to work with. That is, it’s all done in percentages and while a lot of times this can be an asset for running a scenario, here the scenario can really trip us up, as we’ll see. We also are being given different movements that are happening in different directions and it’s not entirely clear from the language in this problem that they are happening in different directions. Finally, there’s a notational issue that both the problem and the answer choices are in percentage and yet with work-rate, speed-distance, many times it’s best to work with fractions. So we have the option to notationally shift over to fractions and back. So let’s dive in.

Machine Efficiency (& Inverse)

On its surface, this is a textbook GMAT problem and what we’re being asked for is relatively straightforward. That is, there’s not a large interpretive part to understanding what we’re being asked for. The challenge here is how we’re going to get it. What would be the  best way to approach this, in my opinion, for most people is to break apart the two different changes that are happening in the problem: the machine efficiency and the length of the production process and understand what each of these two tweaks is doing to your overall problem. Let’s begin with the production time.

The length of the production is decreasing by 25. So the pivot question is how much time is this saving us? And you’re right, it’s on the surface, it’s 25%. But we want to take the inverse of this because we don’t care about the time that it’s saving us, even though the question’s asking that. Rather, what we need to do is figure out how much total time we’re taking at the start versus with these tweaks and see how that’s affected so we’re going to have to invert everything and instead of saying: okay I’m saving 25% of my time, it’s taking only 75% of the time. If we do this in fractions we’re saving 1/4 so it takes us 3/4’s as long to do the same thing. Let’s take that three quarters put it to the side for a second.

Machine Speed

The second part is a little more tricky! Our speed is increasing by 1/3 but that’s the inverse that is when we go faster the time we’re going to spend decreases. I’ll say that once more: the faster we’re going the less time we’re spending. So what does increasing our speed by a third do for us? Well instead of making 3 things, in the same amount of time we can make 4 things. We start out with a unit and we’re adding another third. Three parts, three, four parts.

So once again we are taking only 3/4s of the time to do the same thing due to the increased speed so we only have to spend 3/4s of the amount of time for the increased efficiency and only three quarters of the amount of time for the speed. We put those together multiplicatively and we find that it’s going to take us 9/16 of the time that we used to spend doing in order. The flip of that where we invert, is that we’re saving 7/16 of our time or a little under half. You’ll see from the answer choices that if you’re attuned, you’re limited to the 56.25% and/or 62.5%.

And if you’re familiar with your eighths being 50 and 62.5 as two of the of the eighths, then it’s got to be that 56 number. So there’s a bit of known numbers feeding into this but ultimately the challenge is doing these inversions and recognizing that these problems are built for fractions. Not just this one but just about every work-rate problem.

Deal With Work Rate Problems Fractionally

You want to deal with it fractionally because it’s these ratios of time, the numerator to the denominator that allow us to do things flexibly and to flip stuff around. 4/3s to 3/4s as we saw in this problem. Notice here that running a scenario, especially if you choose a generic number like: Okay well let’s say I make 100 widgets is going to get you into a ton of problems because it’s going to be extraordinarily complex from a calculation standpoint.

You can think about it in advance and choose really good numbers but in doing so you’ll have circumvented the solution path and logically push yourself into saying well wait this is going to be 16ths of something. So for just about everyone out there I would say put it into fractions think carefully and deeply about what each of these two switches does and then put it all together the way you would any other problem. Post your questions below. Subscribe to our channel! And come visit us anytime at www.apexgmat.com. I’ll look forward to seeing you guys again soon.

For another gmat work rate problem, try this Car Problem.

Read more
Featured Video Play Icon
Posted on
23
Apr 2021

Standard Deviation – Clustering (Birds) Problem

Hey guys! Today we’re going to take a look at a DS problem that is a skills problem, focused on GMAT standard deviation.

Standard Deviation & Variance

What they’re asking here is do we have enough information to compute a standard deviation? It’s useful to think of standard deviation as clustering. If we have a whole series of points we can define how clustered or un-clustered the group of points is. That’s all that’s standard deviation, that’s all that variance is. So if we have all the points that works. What we should be on the lookout here for are parametric measurements. Especially things like the average number is, because while the average can be used to compute standard deviation, we need to know how each of the points differs from the average. But if we have each of the points we always get the average. That is, we can compute the average. So the average is a nice looking piece of information that actually has little to no value here. So let’s jump into the introduced information.

Statement 1

Number 1 BOOM – tells us that the average number of eggs is 4 and that’s great except that it doesn’t tell us about the clustering. If we run some scenarios here we could have every nest have 4 eggs or we could have 5 nests have 0, 5 nests have 8, or 9 nests have 0, 1 nest has 40. These are all different clusterings and we could end up with anything in between those extremes as well. So number 1 is insufficient.

Statement 2

Number 2: tells us that each of the 10 bird’s nests has exactly 4 eggs. What does this mean? We have all 10 points. They happen to all be on the average, which means the standard deviation is 0. that is there’s no clustering whatsoever. But 2 gives us all the information we need so B – 2 alone is sufficient is the answer here.

Hope this was useful guys, check out the links below for a video about how to compute standard deviation as a refresher, as well as other problems related to this one. Thanks for watching we’ll see you again real soon

If you enjoyed this GMAT problem, try another one next: Normative Distribution

 

 

Read more
Intro to GMAT data sufficiency article
Posted on
20
Apr 2021

Intro to GMAT Data Sufficiency- All you’ll need to know

By: Apex GMAT
Contributor: Altea Sulollari
Date: 20th April 2021

As a GMAT test-taker, you are probably familiar with data sufficiency problems. These are one of the two question types that you will come across in the GMAT quant section, and you will find up to 10 of them on the exam. The rest of the 31 questions will be problem-solving questions.

The one thing that all GMAT data-sufficiency questions have in common is their structure. That is what essentially sets them apart from the problem-solving questions. 

Keep on reading to find out more about these questions’ particular structures and the topics that they cover:

The question structure:

The GMAT data sufficiency problems have a very particular structure that they follow and that never changes. You are presented with a question and 2 different statements. You will also be given 5 answer choices that remain the same across all data sufficiency problems on the GMAT exam. These answer questions are the following:

A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B)
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statements (1) and (2) TOGETHER are NOT sufficient.

Your job would be to determine whether the 2 statements that you are provided with are sufficient to answer the question.

What topics are covered?

Some of the math topics that you will see in this type of question are concepts from high school arithmetic, geometry and algebra.

Below, you’ll find a list of all concepts you need to know for each math topic:

Geometry

  • Circles
  • Angles
  • Lines
  • Triangles
  • Coordinate geometry
  • Polygons
  • Surface area
  • Volume

Algebra

  • Functions
  • Equations
  • Inequalities
  • Exponents
  • Algebraic expressions
  • Polynomials
  • Permutations and combinations

Arithmetic

  • Basic statistics
  • Real numbers
  • Number theory
  • Fractions
  • Percentages
  • Decimals
  • Probability
  • Integer properties
  • Power and root

Word problems

  • Sets
  • Profit
  • Percentage
  • Ratio
  • Rate
  • Interest
  • Mixtures

Common mistakes people make when dealing with this question type

Actually solving the question

This is the #1 mistake most test-takers make with these problems. These problems are not meant to be solved. Instead, you will only need to set up the problem and not execute it. That is also more time-efficient for you and will give you some extra minutes that you can use to solve other questions. 

Over-calculating

This relates to the first point we made. This question type requires you to determine whether the data you have is sufficient to solve the problem. In that case, calculating won’t help you determine that. On the contrary, over-calculating will eat up your precious minutes.

Rushing

This is yet another common mistake that almost everyone is guilty of. You will have to spend just enough time reading through the question in order to come up with a solution. Rushing through it won’t help you do that, and you will probably miss out on essential details that would otherwise make your life easier. 

Not understanding the facts

What most test-takers fail to consider is that the fact lies in the 2 statements that are included in the questions. Those are the only facts that you have to consider as true and use in your question-solving process. 

3 tips to master this question type:

Review the fundamentals

That is the first step you need to go through before going in for actual practice tests. Knowing that you will encounter these high school math fundamentals in every single quant problem, is enough to convince anyone to review and revise everything beforehand.

Memorize the answer choices

This might sound a bit intimidating at first as most answer choices are very long sentences that tend to be similar to each other in content. However, there is a way to make this easier for you. What you need to do is synthesize the answer choices into simpler and more manageable options. That way, they will be easier to remember. This is what we suggest:

A) Only statement 1
B)
Only statement 2
C) Both statements together
D) Either statement
E) Neither statement

Examine each statement separately

That is definitely the way to go with this GMAT question. You will need to determine whether one of the statements, both, either, or neither is sufficient, and you cannot do that unless you look at each of them separately first.

Now that you have read the article and are well-aware of the best ways to solve data sufficiency problems on the GMAT, try your hand at this question: Number Theory: Data Sufficiency

 

Read more
Featured Video Play Icon
Posted on
14
Apr 2021

GMAT Percentage Problem – Unemployment Rate – Multiple Solution Paths

GMAT Percentage Problems

Hey guys, GMAT Percentage problem/s are commonplace on the GMAT and today we’re going to take a look at one that is straightforward but could very easily get you caught up with the math. In this problem, notice that there’s the word “approximately.” That always means there’s an Estimation Solution Path. We’ll take a look at that first but then we’re going to look at a Scenario Solution Path, which for many people is a lot more natural. In addition to seeing that word approximately you can see that there’s this massive spread within the answer choices. Once again pushing us towards an Estimation Solution Path.

Estimation Solution Path

So let’s dive in: The unemployment rate is dropping from 16% to 9% and your quick synthesis there should be: okay it’s being cut about in half or a little less than half. And monitoring that directionality is important. Additionally, the number of workers is increasing. So we have lower unemployment but a greater number of workers. So we have two things, two forces working against one another. If the number of workers were remaining equal then our answer would be about a 50% decrease or just under a 50% decrease, so like 45% or something like that. But because we’re increasing the number of workers, our decrease in unemployment is lower. That is we have more workers, so we have a larger number of unemployed so we’re not losing as many actual unemployed people and therefore our answer is B: 30% decrease.

Scenario Solution Path

If we want to take a look at this via Scenario, we can always throw up an easy number like 100. We begin with 100 workers and 16% are unemployed so 16 are unemployed. Our workers go from 100 to 120. 9% of 120 is 9 plus 0.9 plus 0.9 = 10.8% or 11%. What’s the percentage decrease from 16 to 11? Well it’s not 50, that’s too big. It’s not 15, that’s too small. It’s about 30 and the math will bear us out there.

So thanks for watching guys! Check out the links below for other GMAT percentage problem/s and we look forward to seeing you again real real soon.

Another GMAT percentage problem

Read more
Featured Video Play Icon
Posted on
08
Apr 2021

GMAT Factorial Problem: Estimation & Scenario Solution

GMAT Factorial Introduction

Factorials and divisibility, together. Two mathematical kids from opposite sides of the tracks, they come together and fall in love and they create this problem. Here we’re asked what numbers might divide some new number 20 factorial plus 17. As a refresher, a factorial is simply the number times each integer below it. So in this case, 20! is equal to 20 x 19 x 18 …. x 3 x 2 x 1. It’s a huge number. And it’s not at all possible to process in GMAT time. What we want to notice about any factorial is that it has as factors every number that it contains. So 20! is divisible by 17, it’s divisible by 15, it’s divisible by 13, 9, 2, what have you and any combination of them as well.

What The GMAT is Counting On You Not Knowing

When we’re adding the 17 though, the GMAT is counting on the idea that we don’t know what to do with it and in fact that’s the entire difficulty of this problem. So I want you to imagine 20! as a level and we’re going to take a look at this graphically. So 20! can be comprised by stacking a whole bunch of 15’s up. Blocks of 15. How many will there be? Well 20 x 19 x 18 x 17 x 16 x 14 times all the way down the line. There will be that many 15’s. But 20! will be divisible by 15. Similarly, by 17, by 19, by any number. They will all stack and they all stack up precisely to 20! because 20! is divisible by any of them.

Answer

So when we’re adding 17 to our number all we need to see is that, hey, 15 doesn’t go into 17, it’s not going to get all the way up there. 17 fits perfectly. 19? guess what? It’s too big and we’re going to have a remainder. So our answer here is B, only 17.

For other problems like this, other factorials, and what have you, please check out the links below and we will see you next time. If you enjoyed this GMAT problem, try your hand at this Science Fair Problem.

Read more
GMAT Prime Factorization Article
Posted on
01
Apr 2021

GMAT Prime Factorization (Anatomy of a Problem)

By: Rich Zwelling (Apex GMAT Instructor)
Date: 1st April 2021

First, if you’d prefer to go straight to the explanation for the solution to the problem given in the last post, continue to the end of this post. But we’ll start with the following Official Guide GMAT problem as a way to talk about GMAT Prime Factorization. Give the problem a shot, if you can:

How many prime numbers between 1 and 100 are factors of 7,150?

A) One
B) Two
C) Three
D) Four
E) Five

One of the things you’ll notice is the linguistic setup of the problem, which is designed to confuse you immediately (a common theme on GMAT problems). They get you panicking right away with mention of a large range (between 1 and 100), and then they compound your frustration by giving you a rather large value (7,150). 

Don’t let that convince you that you can’t do the problem. Because remember, the GMAT is not interested in large calculations, memorization involving large numbers, or weird arcana. Chances are, if you find yourself thinking about a complicated way to do a problem, you’re taking the wrong approach, and there’s a simpler way.

Try to pick out the most operative signal words, which let you know how to address the problem. We are dealing with prime numbers and also the topic of finding factors. The language of the problem may make you nervous, thinking that we must consider a slew of prime numbers up to 100. But the only primes we are really interested in are those that are actually factors of 7,150. 

So let’s focus our attention there. And we can do so with a prime factor tree. Does this bring back memories? 

Now, in the case of 7,150, we don’t have to break it down into prime numbers immediately. Split the number up into factors that are easy to recognize. In this case, the number ends in a zero, which means it is a multiple of 10, so we can start our tree like this:

prime factorization on the GMATNotice that the advantage here is two-fold: It’s easier to divide by 10 and the two resulting numbers are both much more manageable. 

Splitting up 10 into it’s prime factorization is straightforward enough (2 and 5). However, how do we approach 715? Well, it’s since it ends in a 5, we know it must be divisible by 5. At that point, you could divide 715 by 5 using long or short division… 

…or you could get sneaky and use a NARRATIVE approach with nearby multiples:

750 is nearby, and since 75/5 = 15, that must mean that 750/5 = 150. Now, 750 is 35 greater than 715. And since 35/5 = 7, that means that 715 is seven multiples of 5 away from 750. So we can take the 150, subtract 7, and get 143

Mathematically, you can also see this as: 

715/5 = (750-35)/5 = 750/5 – 35/5 = 150 – 7 = 143

So as stands, here’s our GMAT prime factorization:

prime factorization GMAT articleNow, there’s just the 143 to deal with, and this is where things get a bit interesting. There are divisibility rules that help make factoring easier, but an alternative you can always use is finding nearby multiples of the factor in question. 

For example, is 143 divisible by 3? There is a rule for divisibility by 3, but you could also compare 143 against 150. 150 is a multiple of 3, and 143 is a distance of 7 away. 7 is not a multiple of 3, and therefore 143 is not a multiple of 3.

This rule applies for any factor, not just 3. 

Now we can test the other prime numbers. (Don’t test 4 and 6, for example. We know 143 is not even, so it’s not divisible by 2. And if it’s not divisible by 2, it can’t be divisible by 4. Likewise, it’s not divisible by 3, so it can’t be divisible by 6, which is a multiple of 3.)

143 is not divisible by 5, since it doesn’t end in a 5 or 0. It’s not divisible by 7, since 140 is divisible by 7, and 143 is only 3 away. 

What about 11? Here you have two options: 

  1. Think of 143 as 110+33, which is 11*10 + 11*3 → 11*(10+3) → 11*13
  2. If you know your perfect squares well, you could think of 143 as 121+22 

→ 11*11 + 11*2 → 11*(11+2) → 11*13

Either way, you should arrive at the same prime factorization:

GMAT prime factorization QuestionNotice that I’ve marked all prime numbers in blue. This result shouldn’t be a surprise, because notice that everything comes relatively clean: there are only a few prime numbers, they are relatively small, and there is just one slight complication in solving the problem (the factorization of 143). 

So what is the answer? Be very careful that you don’t do all the hard work and falter at the last second. There are five ends to branches in the above diagram, which could lead you prematurely to pick answer choice E. But two of these branches have the same number (5). There are actually only four distinct primes (2, 5, 11, 13). The correct answer is D.

And again, notice that the range given in the question stem (1 to 100) is really a linguistic distraction to throw you off track. We don’t even go beyond 13. 

Next time, we’ll talk about the fascinating topic of twin primes and how they connect to divisibility.

Find other GMAT Number Theory topics here:
Odds and Ends (…or Evens)
Consecutive Integers (plus more on Odds and Evens)
Consecutive Integers and Data Sufficiency (Avoiding Algebra)
GMAT Prime Factorization (Anatomy of a Problem)
A Primer on Primes

Read more
GMAT Prime numbers article with questions
Posted on
29
Mar 2021

A Primer on Primes

By: Rich Zwelling (Apex GMAT Instructor)
Date: 30th March 2021

As I said in my previous post, GMAT Prime Numbers are my favorite topic. This is because not only are they inherently interesting mathematically but they show up in unexpected circumstances on GMAT problems, even when the term “prime” is not explicitly mentioned.

But before we get to that, I thought it would help to review a basic definition:

If you’ve gone through school, you’ve likely heard the definition of a prime as “any number that can be divided only by 1 and itself.” Or put differently, “any number that has only 1 and itself as factors.”  For example, 3 is a prime number, because 1 and 3 are the only numbers that are factors of 3.

However, there is something slightly problematic here. I always then ask my students: “Okay, well then, is 1 prime? 1 is divisible by only 1 and itself.” Many people are under the misconception that 1 is a prime number, but in truth 1 is not prime

There is a better way to think about prime number definitionally:

*A prime number is any number that has EXACTLY TWO FACTORS*

By that definition, 1 is not prime, as it has only one factor

But then, what is the smallest prime number? Prime numbers are also by definition always positive, so we need not worry about negative numbers. It’s tempting to then consider 3, but don’t overlook 2. 

Even though 2 is even, it has exactly two factors, namely 1 and 2, and it is therefore prime. It is also the only even prime number. Take a moment to think critically about why that is before reading the next paragraph…

Any other even number must have more than two factors, because apart from 1 and the number itself, 2 must also be a factor. For example, the number 4 will have 1 and 4 as factors, of course, but it will also have 2, since it is even. No even number besides 2, therefore, will have exactly two factors. 

Another way to read this, then, is that every prime number other than 2 is odd

You can see already how prime numbers feed into other number properties so readily, and we’ll talk much more about that going forward. But another question people often ask is about memorization: do I have to memorize a certain number of prime values? 

It’s good to know up to a certain value. but unnecessary to go beyond that into conspicuously larger numbers, because the GMAT as a test is less interested in your ability to memorize large and weird primes and more interested in your reasoning skills and your ability to draw conclusions about novel problems on the fly. If you know the following, you should be set (with some optional values thrown in at the end):

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, (41, 43)

Thankfully, you’ll notice the list is actually pretty manageable. 

(And an interesting note that many people forget that 27 is actually not prime. But don’t beat yourself up if this happens to you: Terence Tao, one of the world’s leading mathematicians and an expert on prime numbers, actually slipped briefly on national television once and said 27 was prime before catching himself. And he’s one of the best in the world. So even the best of the best make these mistakes.)

Now, here’s an Official Guide problem that takes the basics of Prime Numbers and forces you to do a little reasoning. As usual, give it shot before reading the explanation:

The product of all the prime numbers less than 20 is closest to which of the following powers of 10 ?

A) 109
B) 108
C) 107
D) 106
E) 105

Explanation

For this one, you have a little hint going in, as we’ve provided you with the necessary list of primes you’ll use to find the product.

And the language given (“closest to”) is a huge hint that you can estimate:

2*3*5*7*11*13*17*19 ~= ??

Since powers of 10 are involved, let’s try to group the numbers to get 10s as much as possible. The following is just one of many ways you could do this, but the universal easiest place to start is the 2 and the 5, so let’s multiply those. We’ll mark numbers we’ve accounted for in red:

(2*5)*3*7*11*13*17*19 ~= ??

10*3*7*11*13*17*19 ~= ??

Next, we can look at the 19 and label it as roughly 20, or 2*10:

10*3*7*11*13*17*19 ~= ??

10*3*7*11*13*17*20 ~= ??

10*3*7*11*13*17*2*10 ~= ??

We could also take the 11 and estimate it as another 10:

10*3*7*11*13*17*2*10 ~= ??

10*3*7*10*13*17*2*10 ~= ??

At this point, we should be able to eyeball this. Remember, it’s estimation. We may not know 17*3 and 13*7 offhand. But we know that they’re both around or less than 100 or 102. And a look at the answer choices lets us know that each answer is a factor of 10 apart, so the range is huge. (In other words, estimation error is not likely to play a factor.)

So it’s not unreasonable in the context of this problem to label those remaining products as two values of 102:

10*3*7*10*13*17*2*10 ~= ??

10*(102)*10*(102)*2*10 ~= ??

And at this point, the 2 is negligible, since that won’t be enough to raise the entire number to a higher power of 10. What do we have left?

101*(102)*101*(102)*101 ~= 107 

The correct answer is C. 

Next time, we’ll get into Prime Factorizations, which you can do with any positive integer.

Find other GMAT Number Theory topics here:
Odds and Ends (…or Evens)
Consecutive Integers (plus more on Odds and Evens)
Consecutive Integers and Data Sufficiency (Avoiding Algebra)
GMAT Prime Factorization (Anatomy of a Problem)
A Primer on Primes

 

Read more
Consecutive Integers and Data Sufficiency (Avoiding Algebra) Article
Posted on
25
Mar 2021

Consecutive Integers and Data Sufficiency (Avoiding Algebra)

By: Rich Zwelling (Apex GMAT Instructor)
Date: 25 March 2021

Last time, we left off with the following GMAT Official Guide problem, which tackles the Number Theory property of consecutive integers. Try the problem out, if you haven’t already, then we’ll get into the explanation:

The sum of 4 different odd integers is 64. What is the value of the greatest of these integers?
(1) The integers are consecutive odd numbers
(2) Of these integers, the greatest is 6 more than the least.

Explanation (NARRATIVE or GRAPHIC APPROACHES):

Remember that we talked about avoiding algebra if possible, and instead taking a narrative approach or graphic approach if possible. By that we meant to look at the relationships between the numbers and think critically about them, rather than simply defaulting to mechanically setting up equations.

(This is especially helpful on GMAT Data Sufficiency questions, on which you are more interested in the ability to solve than in actually solving. In this case, once you’ve determined that it’s possible to determine the greatest of the four integers, you don’t have to actually figure out what that integer is. You know you have sufficiency.)

Statement (1) tells us that the integers are consecutive odd numbers. Again, it may be tempting to assign variables or something similarly algebraic (e.g. x, x+2, x+4, etc). But instead, how about we take a NARRATIVE and/or GRAPHIC approach? Paint a visual, not unlike the slot method we were using for GMAT combinatorics problems:

___ + ___ +  ___ + ___  =  64

Because these four integers are consecutive odd numbers, we know they are equally spaced. They also add up to a definite sum.

This is where the NARRATIVE approach pays off: if we think about it, there’s only one set of numbers that could fit that description. We don’t even need to calculate them to know this is the case.

You can use a scenario-driven approach with simple numbers to see this. Suppose we use the first four positive odd integers and find the sum:

_1_ + _3_ +  _5_ + _7_  =  16

This will be the only set of four consecutive odd integers that adds up to 16. 

Likewise, let’s consider the next example:

_3_ + _5_ +  _7_ + _9_  =  24

This will be the only set of four consecutive odd integers that adds up to 24. 

It’s straightforward from here to see that for any set of four consecutive odd integers, there will be a unique sum. (In truth, this principle holds for any set of equally spaced integers of any number.) This essentially tells us [for Statement (1)] that once we know that the sum is set at 64 and that the integers are equally spaced, we can figure out exactly what each integer is. Statement (1) is sufficient.

(And notice that I’m not even going to bother finding the integers. All I care about is that I can find them.)

Similarly, let’s take a graphic/narrative approach with Statement (2) by lining the integers up in ascending order:

_ + __ +  ___ + ____  =  64

But very important to note that we must not take Statement (1) into account when considering Statement (2) by itself initially, so we can’t say that the integers are consecutive. 

Here, we clearly represent the smallest integer by the smallest slot, and so forth. We’re also told the largest integer is six greater than the smallest. Now, again, try to resist the urge to go algebraic and instead think narratively. Create a number line with the smallest (S) and largest (L) integers six apart:

S—————|—————|—————|—————|—————|—————L

Narratively, where does that leave us? Well, we know that the other two numbers must be between these two numbers. We also know that each of the four numbers is odd. Every other integer is odd, so there are only two other integers on this line that are odd, and those must be our missing two integers (marked with X’s here):

S—————|—————X—————|—————X—————|—————L

Notice anything interesting? Visually, it’s straightforward to see now that we definitely have consecutive odd integers. Statement (2) actually gives us the same information as Statement (1). Therefore, Statement (2) is also sufficient. The correct answer is D

And again, notice how little actual math we did. Instead, we focused on graphic and narrative approaches to help us focus more on sufficiency, rather than actually solving anything, which isn’t necessary.

Next time, we’ll make a shift to my personal favorite GMAT Number Theory topic: Prime Numbers…

Find other GMAT Number Theory topics here:
Odds and Ends (…or Evens)
Consecutive Integers (plus more on Odds and Evens)
Consecutive Integers and Data Sufficiency (Avoiding Algebra)
GMAT Prime Factorization (Anatomy of a Problem)
A Primer on Primes

Read more