Posted on
11
Aug 2021

## GMAT Markup Problem – GMAT Data Sufficiency

Hey guys, today we’re going to take a look at a typically characteristic data sufficiency problem that gives us a relationship, and then asks us if we have enough to compute the final value of that relationship. There’s an algebraic solution path here, where they give us the equation and we need to see if we have all but one of the variables, that final variable being the one that they’re asking for. We can also do this via parts, scenario, and graphically, and we’ll take a look at all those as well.

###### GMAT Markup Problem Introduction

This problem describes to us the relationship between the selling price, the cost, and the markup. And notice that, while we’re going to sketch it out here, the actual relationship doesn’t matter to us – all that matters is that if they’re asking for one term in terms of the rest if we have the other terms, that’ll be enough.

Algebraically we have selling price S equals the cost C plus the markup M. So this is giving us the markup in, let’s say dollar terms, whereas we might also set this up as selling price equals cost times one plus the markup percentage. And here we just have that notational shift. So, what we’re looking for, if we want to know the markup relative to the selling price, is an understanding of it either relative to the selling price or relative to the cost. That is, these two things are associated and the markup, when associated with the cost, gives us a ratio. Where the markup, when associated with the selling price, is a fraction. And if you’ll remember notationally these things are expressed differently, but conceptually there’s the same math behind it.

###### Statement 1

Number one gives us in percentage terms the mark up compared to the cost. So, here we can see it as 25% more and this is where it ties into that second version of the algebraic one we just looked at. The cost we can break up into four parts of 25% so that when we add the markup that’s a fifth part. Therefore, the markup comprises one-fifth or 20% of the selling price.

###### Statement 2

Number two provides us a concrete selling price but doesn’t tell us anything about the markup or the mix of cost versus markup as a percentage of the total selling price. Two is insufficient on its own, and as we’ve seen in many other data sufficiency problems, what they’re trying to do here is fool us into thinking we need a specific price, a discrete value to get sufficiency. When the question stem is asking us only for a relative value and when we’re being asked for a relative value, a percentage, a fraction, a ratio be on the lookout for fooling yourself into thinking that you need an anchor point a specific discrete value.

I hope this helps. If you enjoyed this GMAT Markup Problem, try your hand at this Triangle DS Problem.

Posted on
04
Aug 2021

## GMAT Abstract Data Sufficiency Problem

#### Abstract Data Sufficiency Problems & Scenarios

Hi guys! Abstract data sufficiency problems tend to really lend themselves to running scenarios – It doesn’t matter if it’s an abstract inequality or a number theory problem, really anytime you’ve got variables thrown into the question stimulus on a DS problem, scenarios is a good way to go. Now your scenarios can be discrete actual numbers that you throw in there, but you can also leverage rules and have more conceptual-level scenarios. We’re going to take a look at both in this problem.

#### Problem Introduction

We’re being asked here for the evenness or oddness of n which is an integer. At first blush, we’re going to say, “Well, if we have the evenness or oddness of any expression involving n and n alone, we should be able to backtrack it to n.” If you don’t see that then you might fall into the trap of having to go much more deeply into it and figure out “Well, what if n is this, what if n is that?” But notice here that because we’re dealing with evens and odds there are a set of identities that govern every possible addition, or multiplication, subtraction, or division of evens and odds. So, as long as there’s nothing complicating it the expression itself will be enough.

#### Statement 1

Taking a look at the introduced information, number one gives us n2 + 1 is odd that means that n2 is even. How do we know without numbers? If n2 + 1 is odd then adjusting it down by one, removing that one, means we’re definitely going to get to an even, because the number line is just even, odd, even, odd, even, odd all the way up. So, we have n2 is even, and only even times even gives us an even. Odd times odd doesn’t, odd times odd gives us an odd.

So, n must be even if the square of it leads us to an even. Notice again, that we don’t need to do any of that, it’s enough just to say we’ve got n in an expression, and we have its evenness and oddness.

#### Statement 2

Number two works the same way. 3n + 4 is even that’s enough, no more to do, but if we want to we can adjust that 3n – 4 as even down by 4 notches (odd, even, odd, even). So 3n is even and then we know that n divided by 3, that is what is an even divided by 3, will give us n. An even divided by an odd is going to always be an even, for the same reason even times an odd is always going to be an even.

Run some scenarios here, start out with an even number; let’s do 6, 50, and 120. Divide each by 3; 2 (6/3=2), 50 divided by 3 doesn’t work, 40 (120/3=40). So on the two that do work, we get to even numbers. 50 is not allowed to be used as a scenario because we’re told that n – 3 has to be an integer which means, that 3n must also be an integer; that is 3n is a multiple of 3. Since 50 is not a multiple of 3 it’s not a potential 3n. Take a minute with that one, because it’s kind of looking at everything in reverse.

So here we have two different expressions that both give us evenness and oddness, they both work independently. The answer choice is D – each alone is sufficient.

If you enjoyed this problem, try your hand at these Data Sufficiency Problems GMAT Trade Show Problem & Area of a Triangle Problem.

Posted on
28
Jul 2021

## GMAT Trade Show Problem – Data Sufficiency

#### GMAT Trade Show Problem Introduction

Today we’re going to take a look at the Trade Show Problem and this is a GMAT Data Sufficiency problem with averages as the focal point. But really the concept of average is distracting from this problem. So, if we take a look at the question stimulus, we want to figure out what we need, but we need to synthesize some of the information there to understand what we know.

We’re being asked whether or not it gets above a certain threshold an average of 90, and over six days that’s going to be over a total of 540 points. Notice how I did it mathematically, you can represent it graphically as a rectangle, but 90 times 6 is that 540 points. We know though that all of our days at a minimum are 80 which means we can build up from that piece of knowledge. We have 80 x 6 = 480 points and we want to know if we have more or less than 60 points above that minimum that we’re already working with that’s what we need.

#### Solving the GMAT Problem

Ways we might get it include any number of slices and dices for the performance of the rest of the days and the difficulty of this problem in large part will be dependent on how convoluted the GMAT gives us the introduced information on number one and two.

When we look at number one, we’re told that the final four days average out to a hundred. Once again, like with other average problems, each of the individual four days the performance doesn’t matter. We can just say each is exactly 100 and make that assumption, which means each is 20 over – we’re 80 points over the mean. Because we want to know whether we are more or less than 60 points, this knowledge that we’re 100 points tells us “Yes, definitively. We are over that average of 90, we’re over that surplus of 60 points.” So, number one is sufficient.

Number two gives us the opposite information, it talks about the minimum, and, in aggregate, that doesn’t let us know directly whether or not we make those 60 points. That is it’s possible but it’s also possible that we don’t, because we’re dealing with a minimum rather than a maximum or rather we’re dealing with information that can lie on either side of what we need. Therefore 2 is insufficient. Our answer here is A.

I hope that was useful. GMAT nation stay strong, keep averaging. You guys got this! I believe in you. If you want to test your GMAT Data Sufficiency skills, check out the Science Fair problem.

Posted on
20
Apr 2021

## Intro to GMAT Data Sufficiency- All you’ll need to know

By: Apex GMAT
Contributor: Altea Sulollari
Date: 20th April 2021

As a GMAT test-taker, you are probably familiar with data sufficiency problems. These are one of the two question types that you will come across in the GMAT quant section, and you will find up to 10 of them on the exam. The rest of the 31 questions will be problem-solving questions.

The one thing that all GMAT data-sufficiency questions have in common is their structure. That is what essentially sets them apart from the problem-solving questions.

Keep on reading to find out more about these questions’ particular structures and the topics that they cover:

## The question structure:

The GMAT data sufficiency problems have a very particular structure that they follow and that never changes. You are presented with a question and 2 different statements. You will also be given 5 answer choices that remain the same across all data sufficiency problems on the GMAT exam. These answer questions are the following:

A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B)
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statements (1) and (2) TOGETHER are NOT sufficient.

Your job would be to determine whether the 2 statements that you are provided with are sufficient to answer the question.

## What topics are covered?

Some of the math topics that you will see in this type of question are concepts from high school arithmetic, geometry and algebra.

Below, you’ll find a list of all concepts you need to know for each math topic:

### Geometry

• Circles
• Angles
• Lines
• Triangles
• Coordinate geometry
• Polygons
• Surface area
• Volume

### Algebra

• Functions
• Equations
• Inequalities
• Exponents
• Algebraic expressions
• Polynomials
• Permutations and combinations

### Arithmetic

• Basic statistics
• Real numbers
• Number theory
• Fractions
• Percentages
• Decimals
• Probability
• Integer properties
• Power and root

• Sets
• Profit
• Percentage
• Ratio
• Rate
• Interest
• Mixtures

## Common mistakes people make when dealing with this question type

### Actually solving the question

This is the #1 mistake most test-takers make with these problems. These problems are not meant to be solved. Instead, you will only need to set up the problem and not execute it. That is also more time-efficient for you and will give you some extra minutes that you can use to solve other questions.

### Over-calculating

This relates to the first point we made. This question type requires you to determine whether the data you have is sufficient to solve the problem. In that case, calculating won’t help you determine that. On the contrary, over-calculating will eat up your precious minutes.

### Rushing

This is yet another common mistake that almost everyone is guilty of. You will have to spend just enough time reading through the question in order to come up with a solution. Rushing through it won’t help you do that, and you will probably miss out on essential details that would otherwise make your life easier.

### Not understanding the facts

What most test-takers fail to consider is that the fact lies in the 2 statements that are included in the questions. Those are the only facts that you have to consider as true and use in your question-solving process.

## 3 tips to master this question type:

### Review the fundamentals

That is the first step you need to go through before going in for actual practice tests. Knowing that you will encounter these high school math fundamentals in every single quant problem, is enough to convince anyone to review and revise everything beforehand.

This might sound a bit intimidating at first as most answer choices are very long sentences that tend to be similar to each other in content. However, there is a way to make this easier for you. What you need to do is synthesize the answer choices into simpler and more manageable options. That way, they will be easier to remember. This is what we suggest:

A) Only statement 1
B)
Only statement 2
C) Both statements together
D) Either statement
E) Neither statement

### Examine each statement separately

That is definitely the way to go with this GMAT question. You will need to determine whether one of the statements, both, either, or neither is sufficient, and you cannot do that unless you look at each of them separately first.

Now that you have read the article and are well-aware of the best ways to solve data sufficiency problems on the GMAT, try your hand at this question: Number Theory: Data Sufficiency

Posted on
31
Mar 2021

## Ace GMAT Data Sufficiency Questions with this Science Fair Problem

### Data Sufficiency Problem Video Transcript

#### Introduction to Data Sufficiency

Hey guys! Today we’re looking at the Science Fair Problem. In this Data Sufficiency, we’re being asked how many, discrete number, of the 900 students at the school attended all three days. And we can surmise that they’re going to come at us by giving us different breakdowns of how different groups of students behaved and so most likely we’re going to need more than one piece of information to come together in order to give us the precise amount. The only way, typically, that we would have a single piece of information be sufficient is if they gave us the inverse and told us how many, or what percentage, or what fraction of students didn’t attend on all three days. Where we could then compute the opposite.

#### Statement 1

Let’s take a look: Number 1 is telling us that 30% or 270 of the students attended two or more days. If we break this up into a chart, we see this block that’s undefined but we know that 270 attended either two days or three days. Some mix of them, but we don’t know that mix. Therefore, this doesn’t give us what we need from the box and it’s insufficient. However, we could use it possibly with other information that distinguishes between the two day visitors and the three day visitors.

#### Statement 2

Number 2 gives us relative information based upon some other number: 10% of those that attended at least one day. That means of all those that attended at all, for one day, for two days, for three days, 10% of those belong in the three-day box. However, we don’t know how many students that is. So 2 is insufficient. When we try and combine them notice that the information from 2 slices and dices a piece of information that 1 doesn’t give us. There’s no way to reconcile the 10% from that big group into the group that just attended two days or three days. Therefore, we don’t have enough information.

The answer choice is E: both together are still insufficient. Hope this helped. Guys thanks for watching! For other examples of DS problems where you can make charts to fill in the blanks and find the square you need check out the links below and we’ll see you again soon.

If you enjoyed this Data Sufficiency problem video try this Standard Deviation Problem

Posted on
10
Mar 2021

## GMAT Ratio Problem – Mr. Smiths Class

### GMAT Ratio DS Problem

#### Expressing Different Notations

Hey guys!

Expressing different notations is often challenging when you’re first starting out on the GMAT and by different notations mean percentages fractions decimals ratios. We learn all these separately and we tend to of them as separate systems of math when in fact they’re all different expressions of the same math. One half is no different from 0.5 is no different from 50 percent there are different ways of the same thing.

#### Breaking Down The Problem

In this problem all their testing is our ability to shift notations. We’re being asked what the ratio, keyword ratio, is between boys and girls in the or what do we need is just that a ratio it’s fairly straightforward. So they’re probably going to come to us with weird information that doesn’t quite look like a ratio. The big thing to note before we dive in is that when we’re being asked for a ratio. In fact, when we’re being asked for any sort of relative notation, fractions, percentages, anything that needs a base that is compared to a whole. We don’t need precise numbers.

#### Possible ways to solve this problem

So this leaves us open either to run scenarios if we want to or to deal entirely in the relative. So we’re looking for an expression of that ratio in a non-ratio sort of language. Number one tells us there are three times as many boys and girls. We can run a scenario with 3 boys, 1 girl, 75 boys, 25 girls, but we’re being given that ratio. It’s being expressed in language rather than with the term ratio or with the two dots : in between but it’s still a ratio. So it’s sufficient!

#### What Did You Miss?

Correction!! Number one states there are three times as many girls as there are boys. Why do we leave that error in? To point out that here it doesn’t matter. We’re not looking to determine whether the ratio is 1 boy to 3 girls or 3 girls to 1 boy or 3 boys to 1 girl. The only thing that matters, the threshold issue on this problem, is getting to a single specific ratio. What that is or in this case even reversing the boys and girls doesn’t matter because it’s a referendum on the type of information that we have. The moment we have a quantitative comparison of boys and girls coming from number one we know that number one is sufficient. Being able to have flexibility and even focus on the more abstract thing you’re looking for sometimes leads to careless errors on the details though and this is important. Many times those careless errors don’t matter, freeing yourself up to make those and understanding that you don’t have to manage the nitty-gritty once you have the big abstract understanding is very important.

#### Looking at Statement No. 2

Number two goes fractional, telling us that 1/4 of the total class is boys. We can break that into a ratio by understanding that a ratio compares parts to parts whereas a fraction is part of a whole so one out of four has a ratio of one to three. If this isn’t immediately obvious, imagine a pizza and cut it into four slices. One slice is one quarter of the total pizza the comparison of the one slice to the other three slices is the ratio one to three so if you get one slice and your friends get the other ones. The ratio of your slice to the others is 1:3. You have 1/4 of the total so two is also sufficient. Therefore, the answer choice here is D.

Hope this helped guys! Practice this skill of going in between these different notations because it’s one that pays off in dividends. Check out the links below for other problems and we’ll see you again real soon.

If you enjoyed this GMAT Ratio DS Problem, try your hand at this

Posted on
17
Feb 2021

## Data Sufficiency: Area of a Triangle Problem

Hey guys! Today we’re checking out a geometry Data Sufficiency problem asking for the area of a triangle, and while the ask might seem straightforward, it’s very easy to get caught up in the introduced information on this problem. And this is a great example of a way that the GMAT can really dictate your thought processes via suggestion if you’re not really really clear on what it is you’re looking for on DS. So here we’re looking for area but area specifically is a discrete measurement; that is we’re going to need some sort of number to anchor this down: whether it’s the length of sides, or the area of a smaller piece, we need some value!

#### Begin with Statement #2

Jumping into the introduced information, if we look at number 2, because it seems simpler, we have x = 45 degrees. Now you might be jumping in and saying, well, if x = 45 and we got the 90 degree then we have 45, STOP. Because if you’re doing that you missed what I just said. We need a discrete anchor point. The number of degrees is both relative in the sense that the triangle could be really huge or really small, and doesn’t give us what we need. So immediately we want to say: number 2 is insufficient. Rather than dive in deeply and try and figure out how we can use it, let’s begin just by recognizing its insufficiency. Know that we can go deeper if we need to but not get ourselves worked up and not invest the time until it’s appropriate, until number 1 isn’t sufficient and we need to look at them together.

#### Consider Statement #1

Number 1 gives us this product BD x AC = 20. Well here, we’re given a discrete value, which is a step in the right direction. Now, what do we need for area? You might say we need a base and a height but that’s not entirely accurate. Our equation, area is 1/2 x base x height, means that we don’t need to know the base and the height individually but rather their product. The key to this problem is noticing in number 1 that they give us this B x H product of 20, which means if we want to plug it into our equation, 1/2 x 20 is 10. Area is 10. Number 1 alone is sufficient. Answer choice A.

#### Don’t Get Caught Up With “X”

If we don’t recognize this then we get caught up with taking a look at x and what that means and trying to slice and dice this, which is complicated to say the least. And I want you to observe that if we get ourselves worked up about x, then immediately when we look at this BD x AC product, our minds are already in the framework of how to incorporate these two together. Whereas, if we dismiss the x is insufficient and look at this solo, the BD times AC, then we’re much more likely to strike upon that identity. Ideally though, of course, before we jump into the introduced information, we want to say, well, the area of a triangle is 1/2 x base x height. So, if I have not B and H individually, although that will be useful, B x H is enough. And then it’s a question of just saying, well, one’s got what we need – check. One is sufficient. Two doesn’t have what we need – isn’t sufficient, and we’re there. So,

I hope this helped. Look for links to other geometry and fun DS problems below and I’ll see you guys soon. Read this article about Data sufficiency problems and triangles next to get more familiar with this type of GMAT question.

Posted on
29
Jan 2021

## GMAT Data Sufficiency Introduction

By: Apex GMAT
Contributor: Altea Sulollari
Date: 29th January, 2021

As a GMAT test-taker, you are probably familiar with data sufficiency problems. These are one of the two question types that you will come across in the GMAT quant section, and you will find up to 10 of them on the exam. The rest of the 31 questions will be problem-solving questions.

The one thing that all GMAT data-sufficiency questions have in common is their structure. That is what essentially sets them apart from the problem-solving questions.

Keep on reading to find out more about these questions’ particular structures and the topics that they cover:

## The question structure:

The GMAT data sufficiency problems have a very particular structure that they follow and that never changes. You are presented with a question and 2 different statements. You will also be given 5 answer choices that remain the same across all data sufficiency problems on the GMAT exam. These answer questions are the following:

A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D) EACH statement ALONE is sufficient.
E) Statements (1) and (2) TOGETHER are NOT sufficient.

Your job would be to determine whether the 2 statements that you are provided with are sufficient to answer the question.

## What topics are covered?

Some of the math topics that you will see in this type of question are concepts from high school arithmetic, geometry, and algebra.

Below, you’ll find a list of all concepts you need to know for each math topic:

### Geometry

• Circles
• Angles
• Lines
• Triangles
• Coordinate geometry
• Polygons
• Surface area
• Volume

### Algebra

• Functions
• Equations
• Inequalities
• Exponents
• Algebraic expressions
• Polynomials
• Permutations and combinations

### Arithmetic

• Basic statistics
• Real numbers
• Number theory
• Fractions
• Percentages
• Decimals
• Probability
• Integer properties
• Power and root

• Sets
• Profit
• Percentage
• Ratio
• Rate
• Interest
• Mixtures

## Common mistakes people make when dealing with this question type

### Actually solving the question

This is the #1 mistake most test-takers make with these problems. These problems are not meant to be solved. Instead, you will only need to set up the problem and not execute it. That is also more time-efficient for you and will give you some extra minutes that you can use to solve other questions.

### Over-calculating

This relates to the first point we made. This question type requires you to determine whether the data you have is sufficient to solve the problem. In that case, calculating won’t help you determine that. On the contrary, over-calculating will eat up your precious minutes.

### Rushing

This is yet another common mistake that almost everyone is guilty of. You will have to spend just enough time reading through the question in order to come up with a solution. Rushing through it won’t help you do that, and you will probably miss out on essential details that would otherwise make your life easier.

### Not understanding the facts

What most test-takers fail to consider is that the fact lies in the 2 statements that are included in the questions. Those are the only facts that you have to consider as true and use in your question-solving process.

## 3+ tips to master this question type:

### Review the fundamentals

That is the first step you need to go through before going in for actual practice tests. Knowing that you will encounter these high school math fundamentals in every single quant problem, is enough to convince anyone to review and revise everything beforehand.

This might sound a bit intimidating at first as most answer choices are very long sentences that tend to be similar to each other in content. However, there is a way to make this easier for you. What you need to do is synthesize the answer choices into simpler and more manageable options. That way, they will be easier to remember. This is what we suggest:

1. Only statement 1
2. Only statement 2
3. Both statements together
4. Either statement
5. Neither statement

### Examine each statement separately

That is definitely the way to go with this GMAT question. You will need to determine whether one of the statements, both, either, or neither is sufficient, and you cannot do that unless you look at each of them separately first.

Now that you have read the article and are well-aware of the best ways to solve data sufficiency problems on the GMAT, try your hand at this

Posted on
26
Jan 2021

## Isosceles Triangles and Data Sufficiency

By: Rich Zwelling, Apex GMAT Instructor
Date: 21st January, 2021

Although we’ve already discussed isosceles triangles a bit during our discussion of 45-45-90 (i.e. isosceles right) triangles, it’s worth discussing some other contexts in which you may see isosceles triangles on the GMAT, specifically on Data Sufficiency problems.

As we discussed before, an isosceles triangle is any triangle that features two equal sides and thus two equal opposite angles:

That’s an easy enough definition to remember, but how does the GMAT turn this into more challenging problems? For that, let’s take a look at the following Official Guide problem. Try to solve before reading the explanation below the problem:

In the figure above, what is the value of x + y ?
(1) x = 70
(2) ABC and ADC are both isosceles triangles

#### Explanation

In this case, it’s straightforward enough to determine that each statement alone will be insufficient. Statement (1) gives us a definitive value for x, but no information about y, thus we cannot answer the question (the value of x+y). And although Statement (2) labels each triangle in the diagram as isosceles, we have no way of knowing the specific angles involved nor their relationships.

However, as with many Data Sufficiency problems, especially those involving Geometry, things can get thorny when we have to combine the statements. The two statements look very complimentary, and that could lead us to prematurely conclude the answer is C (i.e. the two statements are sufficient when combined). But we must do a thorough check.

#### Reframing the question

Remember that at any point during a Data Sufficiency problem — beginning, middle, or end — you can reframe the question for simplicity. The question asks for the value of x+y. But now that we are combining the statements, we already know that x=70. In terms of sufficiency, then, what information do we need? The only thing missing is a definitive value of y. The question now might as well be “What is the value of y?”

Now, here’s where the GMAT thinking really comes into play. It’s one thing to understand what an isosceles triangle is. It’s quite another to judge what a diagram of an isosceles triangle does or does not tell you and what you can or cannot extrapolate from it.

One of my personal favorite things about Geometry Data Sufficiency problems is that they tend to be very intuitive visually. You can often answer them by manipulating figures.

We know that triangle ADC is isosceles, but is that enough to give us definitive measurements? Visually, which of these does it look like?

Without any numerical evaluations, we can see that we can’t get a definitive measure for the angle at D, which in this case is our y. So even when we combine the statements, we cannot get an answer to our question. The correct answer is E

Here’s another case of a tricky Data Sufficiency problem involving isosceles triangles:

In isosceles triangle RST, what is the measure of angle R?

• The measure of angle T is 100 degrees
• The measure of angle S is 40 degrees

Again, give the problem a shot before reading the answer and explanation.

#### Explanation

This is one for which you can draw a diagram, but it’s not necessary. The trick here is to remember another key property of triangles, namely that all angles in the triangle must sum to 180 degrees.

Since the triangle is isosceles, and since each statement gives you only one angle of three, the temptation can be to say that each statement is insufficient on its own. This is certainly the case for Statement (2), because the 40-degree angle could be one of a pair (in which case we would have a 40-40-100 triangle) or the 40-degree angle could be the odd angle out (in which case we would have a 40-70-70 triangle).

Because the problem asks for the value of R, and since R could be 40, 70, or 100 depending on the situations outlined above, Statement (2) is INSUFFICIENT.

However, there’s a catch when evaluating Statement (1). Notice that angle T is an obtuse angle, meaning it is greater than 90 degrees. Is it possible that there are two 100-degree angles in a triangle? This would produce a total of 200 degrees, which would exceed the 180-degree total for any triangle. As such, the only possibility is that the 100 degree angle is the odd angle out, and the other two angles are equal acute angles (specifically, we have a 40-40-100 triangle).

Now we know R must be 40 degrees. Statement (1) is sufficient, and the correct answer is A.

But notice how the GMAT sets the statements up to bait you into thinking that you must combine the two statements to figure out the value of angle R.

Now that we’ve finished talking about the basic triangle types, we can move on to talking about what happens when triangles are used within different shapes. In the meantime, here are links to our other triangle articles: